14th INTERNATIONAL
JUNIOR
SCIENCE
OLYMPIAD

THE NETHERLANDS 2017

Water and sustainability

Theoretical Test

Marking scheme
December, $7^{\text {th }} 2017$

Biology questions

Plants in floodplains

1. Maximum score 1.2

An example of a correct calculation is:
The slope of the initial decline of the curve describes the maximum respiration rate per liter per minute. This slope is $\frac{220}{56} \mu \mathrm{~mol} /(\mathrm{L} \mathrm{min})$ (see figure).

The volume of the box is 1.2 L , so the maximum respiration rate of the submerged plant is $\frac{220}{56} \times 1.2=4.7 \mu \mathrm{~mol} / \mathrm{min}$ (range: $\pm 0.2 \mu \mathrm{~mol} / \mathrm{min}$).

- notion that the slope of the initial decline of the curve describes the maximum respiration rate per liter per minute
- calculation of the slope
- multiplying the slope by $1.2(\mathrm{~L}) \quad 0.4$

2. Maximum score 0.4
$4.7 \mu \mathrm{~mol} / \mathrm{min}$
Remark
The answer should be the same as the result of the calculation of question 1.
3. Maximum score 1.2

Oysters

4. Maximum score 1.2

A correct answer may look as follows:


```
correct meiosis I step (from first to second row of C)
per correct meiosis II step (second to third row of B and C)
scores are also indicated in the figure above (in brackets).
Remark
Cells derived from the same cell can be permuted.
If in B the student gives a faulty meiosis II for all four daughter cells, he/she also receives full points.
If nothing is filled in on the second row of \(C\), the student does not receive points for the empty cells on the third row.
```

5. Maximum score 0.8

Species	O. edulis (oyster)	B. ostreae (protist)
Role	III	IV

per correct answer
6. Maximum score 0.8

Parameter	p	q
Description	IV	VI

[^0]7. Maximum score 1.2

Parameter	a	b	c
Triploid vs. diploid	+	\circ	-

Explanation:

a : birth/growth rate of oyster: '[triploid oysters] grow and mature faster'.
b : death rate of oyster: no info provided
c : infection parameter: '[triploid oysters] are more resistant to infections'.
per correct cell
Remark
No points for empty cells.

Osmosis in fish

8. Maximum score 1.2
at location 1: \rightarrow (arrow to the right)
at location 2: \leftarrow (arrow to the left)
at location 3: $\mathrm{H}\left(\right.$ low \% O O_{2})
at location 4: $\mathrm{L}\left(\right.$ high \% O O_{2})

- directions of both arrows at locations 1 and 2 are opposite 0.4
- if arrows are opposite and direction at locations 1 and 2 correct 0.4
- both indications at locations 3 and 4 correct 0.4

9. Maximum score 0.8

I swell up
II very little
III large
IV diluted
per correct answer
0.2

Anammox
10. Maximum score 1.2

Hypothesis	Experime			Prediction
1	A	(B)	C	(1) 2
II	(A)	B	C	(1) 2
III	A	B	(C)	(1) OR (2)

- all pairings of I-III with A-C are correct 0.8
if two pairing of I - III with A - C are correct 0.4
if two pairing of I - III with A - C are correct 0.2
all predictions correct 0.4
if one or two pairing(s) of I-III with A - C is/are correct and the corresponding prediction correct 0.4
if all pairings correct, but one prediction incorrect 0.2
if no pairing is correct or no prediction is correct 0

Chemistry questions

Water and the fight against Legionella

11. Maximum score 1.2

An example of a correct answer is:
After x D-values the concentration is decreased to $0.10^{x} \times 1200 \mathrm{cfu} / \mathrm{L}$. So to reach a level of $100 \mathrm{cfu} / \mathrm{L}: 0.10^{x} \times 1200=100$. This gives $x=1.08$.
So after heating during $1.08 \times 5=5.4 \mathrm{~min}$ the concentration of Legionella in the water is below the level that is regarded as safe.

- after x D-values the concentration is decreased to $0.10^{x} \times 1200 \mathrm{cfu} / \mathrm{L} 0.4$
\cdot calculation of x 0.4
- rest of the calculation 0.4

12. Maximum score 1.6

An example of a correct answer is:
The equilibrium is: $\mathrm{HClO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{ClO}^{-}$

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{ClO}^{-}\right]}{[\mathrm{HClO}]} \text { or }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=K_{\mathrm{a}} \frac{[\mathrm{HClO}]}{\left[\mathrm{ClO}^{-}\right]}
$$

So when $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>K_{\mathrm{a}}$ then $[\mathrm{HClO}]>\left[\mathrm{ClO}^{-}\right]$or $\mathrm{pH}<\mathrm{pK} K_{\mathrm{a}}$. $\mathrm{p} K_{\mathrm{a}}=-\log 4 \cdot 0 \cdot 10^{-8}=7.40$.
In the pH region below $7.40[\mathrm{HClO}]>\left[\mathrm{ClO}^{-}\right]$.

- correct expression for $K_{a} \quad 0.4$
- when $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>K_{\mathrm{a}}$ then $[\mathrm{HClO}]>\left[\mathrm{ClO}^{-}\right] \quad 0.4$
- calculation of the pH value 0.4
- this is a maximum pH 0.4

Remark
If the student gives the wrong number of significant figures, no points will be subtracted.
13. Maximum score 1.2

- half-reaction of the reducing agent: $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} 0.4$
- half-reaction of the oxidizing agent: $2 \mathrm{HClO}+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O} \quad 0.4$
- overall reaction equation: $\mathrm{Cu}(\mathrm{s})+2 \mathrm{HClO}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{aq}) 0.4$

If the following answer is given:
half-reaction of the reducing agent: $2 \mathrm{HClO}+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$ half-reaction of the oxidizing agent: $\mathrm{Cu}(\mathrm{s}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}$
overall reaction equation: $\mathrm{Cu}(\mathrm{s})+2 \mathrm{HClO}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Cl}_{2}(\mathrm{aq})$
Remarks:

- When the student gives an equation like
$\mathrm{Cu}(\mathrm{s})-2 e^{-} \rightarrow \mathrm{Cu}^{2+}(\mathrm{aq})$
no points will be subtracted.
- No points will be subtracted for missing or incorrect state indications.

14. Maximum score 0.8

A correct answer may look as follows:

- correct electrode indicated 0.4
- flow of the electrons correct in relation to indicated electrode

15. Maximum score 0.8
$2 \sim \mathrm{~S}-\mathrm{H}+2 \mathrm{Ag}^{+} \rightarrow \sim \mathrm{S}-\mathrm{S} \sim+2 \mathrm{Ag}+2 \mathrm{H}^{+}$
-2 S -H left and $2 \mathrm{H}^{+}$right 0.4

- $2 \mathrm{Ag}^{+}$left and 2 Ag right 0.4

16. Maximum score 0.4

The reaction of silver ions with $\sim S-H$ groups in one protein chain results in a change of the tertiary structure of the protein.

Wastewater treatment

17. Maximum score 1.2

An example of a correct answer is:
$0.632 \times 2 \times 32.00 \times 10^{-3} \times 175000 \times 365 \times 3 \times 0.19=1.5 \cdot 10^{6}$ euros

- calculating the number of moles of oxygen needed per inhabitant per day: multiplying 0.632 (moles) by 2
- converting the number of moles of oxygen needed into kg oxygen needed per inhabitant per day: multiplying by the molar mass of oxygen ($=32.00 \mathrm{~g} / \mathrm{mol}$) and by $10^{-3}(\mathrm{~kg} / \mathrm{g})$
- converting the amount of kg oxygen needed per inhabitant per day into kg oxygen per year for the population of Nijmegen: multiplying by 175000 (inhabitants) and by 365 (days per year)
- converting the amount of kg oxygen per year for the population of Nijmegen into the costs per year: multiplying by 3 (kWh per kg oxygen) and by 0.19 ($€$ per kWh) and the answer lies in between $1.47 \cdot 10^{6}$ euros and $1.5 \cdot 10^{6}$ euros

Remark
If the answer is given as 1470000 euros or 1500000 euros no points are subtracted.
18. Maximum score 1.6

An example of a correct answer is:
$\frac{2-0.75}{2} \times 100 \%=63 \%$.

- oxidizing one mole of $\mathrm{NH}_{4}{ }^{+}$to $\mathrm{NO}_{3}{ }^{-}$in the conventional process requires 2 moles of oxygen 0.4
- oxidizing one mole of NH_{4}^{+}to NO_{2}^{-}in the anammox process requires 1.5 moles of oxygen 0.4
- only half of the amount of $\mathrm{NH}_{4}{ }^{+}$has to be oxidized 0.4
- calculation of the percentage reduction 0.4

If the answer $\frac{2-1.5}{2} \times 100 \%=25 \%$ is given: 1.2
If the answer $\frac{3-1}{3} \times 100 \%=67 \%$ is given 0.8
If the answer $\frac{3-2}{3} \times 100 \%=33 \%$ is given 0.4
19. Maximum score 1.2

A correct answer may look as follows:

$\cdot \mathrm{NH}_{4}^{+}$connected with N_{2} via NO_{2}^{-}and $\mathrm{NO}_{3}{ }^{-} \quad 0.4$

- 'Nit' and 'Den' in the right place 0.4
- shortcut 'Amx' from $\mathrm{NH}_{4}{ }^{+}$to N_{2} and shortcut 'Amx' from $\mathrm{NO}_{2}{ }^{-}$to $\mathrm{N}_{2} \quad 0.4$

Physics questions

Wind energy

20. Maximum score 0.4
$P=8 P_{0}$ (W)
21. Maximum score 1.6

An example of a correct answer is:
$P=1 / 2 \times \pi \times\left(\frac{80}{2}\right)^{2} \times 1.2 \times\left(\frac{36 \times 10^{3}}{3600}\right)^{3} \times 0.70 \times 0.59=1.2 \cdot 10^{6} \mathrm{~W}$

- calculation of the area that is covered by the sails: $\pi \times\left(\frac{80}{2}\right)^{2}$
- calculation of the wind speed in m / s : multiplying $36(\mathrm{~km} / \mathrm{h})$ by $10^{3}(\mathrm{~m} / \mathrm{km})$ and dividing by 3600 (s / h)
- applying the factor $0.70 \times 0.590 .4$
- completion of the calculation 0.2
- answer in 2 or 3 significant figures 0.2

22. Maximum score 1.2

An example of a correct answer is:
The volume of water that has to be pumped is $V=\frac{m}{\rho}=\frac{3.3 \cdot 10^{11}}{1.03 \cdot 10^{3}}=3.2 \cdot 10^{8} \mathrm{~m}^{3}$.
The height difference is $h=40.0-32.0=8.0 \mathrm{~m}$.
So the area of the reservoir is $A=\frac{V}{h}=\frac{3.2 \cdot 10^{8}}{8.0}=4.0 \cdot 10^{7} \mathrm{~m}^{2}$.

- use of $A=\frac{V}{h}$
- use of $V=\frac{m}{\rho}$
- completion of the calculation
- answer in 2 or 3 significant figures 0.2

23. Maximum score 2.0

An example of a correct answer is:
The increase in potential energy is: $\Delta E_{\mathrm{p}}=m g \Delta h=3.3 \cdot 10^{11} \times 9.81 \times 1 / 2 \times(40.0+32.0)=$ $1.17 \cdot 10^{14} \mathrm{~J}$.
The total average power of the wind turbines is $75 \times 5.0 \cdot 10^{6}=375 \cdot 10^{6} \mathrm{~W}$.
Since $E=P t$, and $E=\Delta E_{\mathrm{p}}$, it follows that $t=\frac{\Delta E_{\mathrm{p}}}{P}=\frac{1.17 \cdot 10^{14}}{375 \cdot 10^{6}}=3.11 \cdot 10^{5} \mathrm{~s}$ or $\frac{3.11 \cdot 10^{5}}{3600}=86 \mathrm{~h}$.

- insight that $\Delta E_{\mathrm{p}}=m g \Delta h \quad 0.4$
\cdot insight that $\Delta h=1 / 2 \times(40.0+32.0) \mathrm{m} \quad 0.4$
- calculation of $\Delta E_{\mathrm{p}} \quad 0.4$
- use of $E=P t \quad 0.4$
- completion of the calculation 0.2
- answer in 2 or 3 significant figures 0.2

24. Maximum score 1.2

Yes	No	Question
	$\sqrt{ }$	Because of its location at sea, nobody is annoyed by this plant.
$\sqrt{ }$		In this plant, energy can be stored and subsequently be used in the absence of wind.
$\sqrt{ }$		In this plant, energy can be stored and subsequently be used whenever necessary.
	$\sqrt{ }$	This plant is a cheap way of generating electricity.
$\sqrt{ }$		This plant can supply a constant power.
$\sqrt{ }$		The power supply of this plant can be adapted to the demand.
	$\sqrt{ }$	This plant can replace a number of coal-fired power stations.
	$\sqrt{ }$	This plant does not expel CO_{2}.

Per correct answer

Remark:

For every wrong argument 0.15 points deduction. The total score for this question cannot be less than 0 points.

Room for the river

25. Maximum score 0.8

An example of a correct derivation is:
For n holds: $n=\frac{A}{Q} D^{2 / 3} S^{1 / 2}$
So the unit of n is: $\frac{\mathrm{m}^{2}}{\mathrm{~m}^{3} / \mathrm{s}} \mathrm{m}^{2 / 3}$ or $\mathrm{s} / \mathrm{m}^{1 / 3}$.

- all units correctly used 0.4
- rest of the derivation 0.4

26. Maximum score 1.2

An example of a correct calculation is:
$D=\left(\frac{0.10 \times 1.4 \cdot 10^{4} \times 0.018}{200 \times\left(5.0 \cdot 10^{-4}\right)^{1 / 2}}\right)^{3 / 5}=2.8 \mathrm{~m}$.

- multiplying $1.4 \cdot 10^{4}\left(\mathrm{~m}^{3} / \mathrm{s}\right)$ by $0.10 \quad 0.4$
- use of the correct values of D, W and S 0.4
- completion of the calculation 0.2
- answer in 2 or 3 significant figures 0.2

27. Maximum score 1.6

An example of a correct calculation is:
$0.99 \times 0.99^{2 / 3} \times \frac{0.018}{0.022} \times 10 \%=8.0 \%$.

- insight that A decreases by $1 \% \quad 0.4$
- insight that because of the decrease in D of 1%, the drain decreases by a factor $0.99 \times 0.99^{2 / 3} 0.4$
- insight that when n increases by a factor $\frac{0.022}{0.018}$, the drain decreases by a factor $\frac{0.018}{0.022} \quad 0.4$
- completion of the calculation 0.2
\cdot answer in 2 or 3 significant figures 0.2

Remark

If D of previous question is used, correct calculation gives the same answer and same amount of marks.

[^0]: per correct answer

